95 research outputs found

    Integrative analysis of a cancer somatic mutome

    Get PDF
    BACKGROUND: The consecutive acquisition of genetic alterations characterizes neoplastic processes. As a consequence of these alterations, molecular interactions are reprogrammed in the context of highly connected and regulated cellular networks. The recent identification of the collection of somatically mutated genes in breast tumors (breast cancer somatic "mutome") allows the comprehensive study of its function and organization in complex networks. RESULTS: We analyzed functional genomic data (loss of heterozygosity, copy number variation and gene expression in breast tumors) and protein binary interactions from public repositories to identify potential novel components of neoplastic processes, the functional relationships between them, and to examine their coordinated function in breast cancer pathogenesis. This analysis identified candidate tumor suppressors and oncogenes, and new genes whose expression level predicts survival rate in breast cancer patients. Mutome network modeling using different types of pathological and healthy functional relationships unveils functional modules significantly enriched in genes or proteins (genes/proteins) with related biological process Gene Ontology terms and containing known breast cancer-related genes/proteins. CONCLUSION: This study presents a comprehensive analysis of the breast somatic mutome, highlighting those genes with a higher probability of playing a determinant role in tumorigenesis and better defining molecular interactions related to the neoplastic process

    Genetic interactions: the missing links for a better understanding of cancer susceptibility, progression and treatment

    Get PDF
    It is increasingly clear that complex networks of relationships between genes and/or proteins govern neoplastic processes. Our understanding of these networks is expanded by the use of functional genomic and proteomic approaches in addition to computational modeling. Concurrently, whole-genome association scans and mutational screens of cancer genomes identify novel cancer genes. Together, these analyses have vastly increased our knowledge of cancer, in terms of both "part lists" and their functional associations. However, genetic interactions have hitherto only been studied in depth in model organisms and remain largely unknown for human systems. Here, we discuss the importance and potential benefits of identifying genetic interactions at the human genome level for creating a better understanding of cancer susceptibility and progression and developing novel effective anticancer therapies. We examine gene expression profiles in the presence and absence of co-amplification of the 8q24 and 20q13 chromosomal regions in breast tumors to illustrate the molecular consequences and complexity of genetic interactions and their role in tumorigenesis. Finally, we highlight current strategies for targeting tumor dependencies and outline potential matrix screening designs for uncovering molecular vulnerabilities in cancer cells

    Evidence for systems-level molecular mechanisms of tumorigenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer arises from the consecutive acquisition of genetic alterations. Increasing evidence suggests that as a consequence of these alterations, molecular interactions are reprogrammed in the context of highly connected and regulated cellular networks. Coordinated reprogramming would allow the cell to acquire the capabilities for malignant growth.</p> <p>Results</p> <p>Here, we determine the coordinated function of cancer gene products (i.e., proteins encoded by differentially expressed genes in tumors relative to healthy tissue counterparts, hereafter referred to as "CGPs") defined as their topological properties and organization in the interactome network. We show that CGPs are central to information exchange and propagation and that they are specifically organized to promote tumorigenesis. Centrality is identified by both local (degree) and global (betweenness and closeness) measures, and systematically appears in down-regulated CGPs. Up-regulated CGPs do not consistently exhibit centrality, but both types of cancer products determine the overall integrity of the network structure. In addition to centrality, down-regulated CGPs show topological association that correlates with common biological processes and pathways involved in tumorigenesis.</p> <p>Conclusion</p> <p>Given the current limited coverage of the human interactome, this study proposes that tumorigenesis takes place in a specific and organized way at the molecular systems-level and suggests a model that comprises the precise down-regulation of groups of topologically-associated proteins involved in particular functions, orchestrated with the up-regulation of specific proteins.</p

    Exploring the Link between Germline and Somatic Genetic Alterations in Breast Carcinogenesis

    Get PDF
    Recent genome-wide association studies (GWASs) have identified candidate genes contributing to cancer risk through low-penetrance mutations. Many of these genes were unexpected and, intriguingly, included well-known players in carcinogenesis at the somatic level. To assess the hypothesis of a germline-somatic link in carcinogenesis, we evaluated the distribution of somatic gene labels within the ordered results of a breast cancer risk GWAS. This analysis suggested frequent influence on risk of genetic variation in loci encoding for “driver kinases” (i.e., kinases encoded by genes that showed higher somatic mutation rates than expected by chance and, therefore, whose deregulation may contribute to cancer development and/or progression). Assessment of these predictions using a population-based case-control study in Poland replicated the association for rs3732568 in EPHB1 (odds ratio (OR) = 0.79; 95% confidence interval (CI): 0.63–0.98; Ptrend = 0.031). Analyses by early age at diagnosis and by estrogen receptor α (ERα) tumor status indicated potential associations for rs6852678 in CDKL2 (OR = 0.32, 95% CI: 0.10–1.00; Precessive = 0.044) and rs10878640 in DYRK2 (OR = 2.39, 95% CI: 1.32–4.30; Pdominant = 0.003), and for rs12765929, rs9836340, rs4707795 in BMPR1A, EPHA3 and EPHA7, respectively (ERα tumor status Pinteraction<0.05). The identification of three novel candidates as EPH receptor genes might indicate a link between perturbed compartmentalization of early neoplastic lesions and breast cancer risk and progression. Together, these data may lay the foundations for replication in additional populations and could potentially increase our knowledge of the underlying molecular mechanisms of breast carcinogenesis

    Comprehensive establishment and characterization of orthoxenograft mouse models of malignant peripheral nerve sheath tumors for personalized medicine

    Get PDF
    Malignant peripheral nerve sheath tumors (MPNSTs) are soft-tissue sarcomas that can arise either sporadically or in association with neurofibromatosis type 1 (NF1). These aggressive malignancies confer poor survival, with no effective therapy available. We present the generation and characterization of five distinct MPNST orthoxenograft models for preclinical testing and personalized medicine. Four of the models are patient-derived tumor xenografts (PDTX), two independent MPNSTs from the same NF1 patient and two from different sporadic patients. The fifth model is an orthoxenograft derived from an NF1-related MPNST cell line. All MPNST orthoxenografts were generated by tumor implantation, or cell line injection, next to the sciatic nerve of nude mice, and were perpetuated by 7-10 mouse-to-mouse passages. The models reliably recapitulate the histopathological properties of their parental primary tumors. They also mimic distal dissemination properties in mice. Human stroma was rapidly lost after MPNST engraftment and replaced by murine stroma, which facilitated genomic tumor characterization. Compatible with an origin in a catastrophic event and subsequent genome stabilization, MPNST contained highly altered genomes that remained remarkably stable in orthoxenograft establishment and along passages. Mutational frequency and type of somatic point mutations were highly variable among the different MPNSTs modeled, but very consistent when comparing primary tumors with matched orthoxenografts generated. Unsupervised cluster analysis and principal component analysis (PCA) using an MPNST expression signature of ~1,000 genes grouped together all primary tumor-orthoxenograft pairs. Our work points to differences in the engraftment process of primary tumors compared with the engraftment of established cell lines. Following standardization and extensive characterization and validation, the orthoxenograft models were used for initial preclinical drug testing. Sorafenib (a BRAF inhibitor), in combination with doxorubicin or rapamycin, was found to be the most effective treatment for reducing MPNST growth. The development of genomically well-characterized preclinical models for MPNST allowed the evaluation of novel therapeutic strategies for personalized medicine

    Gene set-based analysis of polymorphisms: finding pathways or biological processes associated to traits in genome-wide association studies

    Get PDF
    Genome-wide association studies have become a popular strategy to find associations of genes to traits of interest. Despite the high-resolution available today to carry out genotyping studies, the success of its application in real studies has been limited by the testing strategy used. As an alternative to brute force solutions involving the use of very large cohorts, we propose the use of the Gene Set Analysis (GSA), a different analysis strategy based on testing the association of modules of functionally related genes. We show here how the Gene Set-based Analysis of Polymorphisms (GeSBAP), which is a simple implementation of the GSA strategy for the analysis of genome-wide association studies, provides a significant increase in the power testing for this type of studies. GeSBAP is freely available at http://bioinfo.cipf.es/gesbap
    corecore